Answer:
Option A
Explanation:
We have,
$a=2 \hat{i}+\hat{j}-3\hat{k}$
and $b= \hat{i}+3\hat{j}+2\hat{k}$
Clearly , c is parallel to $a \times b$
Here, $a\times b=\begin{bmatrix}\hat{i} & \hat{j}&\hat{k} \\2 & 1&-3\\1&3&2 \end{bmatrix}=\hat{i}(11)-\hat{j}(7)+\hat{k}(5)$
$11 \hat{i}-7 \hat{j}+5\hat{k}=d$ (say)
Now, $\hat{d}=\frac{a\times b}{|a \times b|}=\frac{11\hat{i}-7\hat{j}+5\hat{k}}{\sqrt{195}}$
Thus, $c=|c|\hat{d}=\frac{2}{\sqrt{195}}(11 \hat{i}-7\hat{j}+5\hat{k})$
Hence, volume of the parallelopiped= [a b c]
= $\begin{bmatrix}2 & 1&-3 \\1 & 3&2\\\frac{22}{\sqrt{195}}&\frac{-14}{\sqrt{195}}&\frac{10}{\sqrt{195}} \end{bmatrix}$
=$\frac{2}{\sqrt{195}}\begin{bmatrix}2 & 1&-3 \\1 & 3&2\\11&-7&5 \end{bmatrix}$
= $\frac{2}{\sqrt{195}}[2(29)-1(-17)-3(-40)]$
=$\frac{2}{\sqrt{195}}[58+17+120]$
= $\frac{2}{\sqrt{195}}\times195$
=$2\sqrt{195}$