<<12345>>
16.

If   $f(x)= \begin{cases}\sin x & if x\leq0\\x^{2}+a^{2}, &if 0<x<1\\bx+2, & if 1\leq x \leq 2\\0&,ifx>2\end{cases}$ is continuous

On IR, then a+b+ab=


A) -2

B) 0

C) 2

D) -1



17.

In the expansion of $(1+x)^{n}$ , the coefficients of p th and (p+1) th terms are respectively p and q then p+q= 


A) n+3

B) n+2

C) n

D) n+1



18.

The local maximum of $y=x^{3}-3x^{2}+5$ is attained at 


A) x=0

B) x=2

C) x=1

D) x=-1



19.

Let $a=2 \hat{i}+\hat{j}-3\hat{k}$ and $b= \hat{i}+3\hat{j}+2\hat{k}$ . Then the volume of the parallelopiped having coterminous edges as a,b and c, where c is the vector perpendicular to the plane of a, b and |c|=2 is 


A) $2\sqrt{195}$

B) 24

C) $\sqrt{200}$

D) $\sqrt{195}$



20.

If $\tan \theta_{1}=k \cot \theta_{2}$ , then $\frac{\cos (\theta_{1}+\theta_{2})}{\cos (\theta_{1}-\theta_{2}) }=$


A) $\frac{1+k}{1-k}$

B) $\frac{1-k}{1+k}$

C) $\frac{k+1}{k-1}$

D) $\frac{k-1}{k+1}$



<<12345>>